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ABSTRACT 

This report is a discussion of the problem of determining, 
through the analysis of radar  return signals, the roughness of a 
spherical target such as a satellite or a planet. 
are made toward a solution of this problem: The impulse response 
of a perturbed sphere is obtained. Statistical relationships of a radar  
signal reflected from the sphere are developed. 
are employed to compute the ensemble average and autocorrelation 
of the return signal. The computed results obtained a re  compared 
with experimental data. 
and to exploit the impulse response approach a re  made. 

The following steps 

These relationships 

Recommendations for further work to verify 

A LI 
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1.0 INTRODUCTION 

The radar return from lunar and planetary surfaces is of 
interest for several reasons. For example, it can help in the deter- 
mination of surface Characteristics that may influence the establish- 
ment of design criteria for landing systems. This study was  initiated 
to investigate the application of a new mathematical theory of the 
reflection of electromagnetic waves a The theory, which is described 
in Appendix I, is based on the derivation of the impulse response of a 
reflecting surface. 
Brown. 

The approach is different from that of W. E. 
2 

In this study, the theory is applied to a perturbed spherical 
surface to determine the pscbability distribution and spatial corre- 
lation of the slopes on the surface. Frequency-shift effects a r e  not 
considered. 

Because of the amount of experimental data available, the 
surface of the moon was chosen for this study. The technique might 
next be applied to Venus and to the Earth from abeut 250 kilometers. 

This study suggests the computation of ensemble averages of 
return signals based upon assumptiocs of the statistics of the surface 
characteristics , Father than the cornputation of a single radar return 
signal f O r  a particular orientation of the reflecting surface. 
Sec. 2.0 of this report the Basore modified potential of a perturbed 
sphere in terms of surface parameters is derived. The modified 
potential is essentially the integral of the impulse response. The 
surface parameters used are the radius and angles determined by the 
deviation of the outer normal from that of a smooth sphere. Section 
3. 0 is devoted to statistical moments of the modified potential as a 
function of the statistics of the surface parameters. The moments of 
the madified potential are in turn used in Sec. 4. 0 to describe 
ensemble averages of radar re tu rn  signals. 

In 

1 
Basore, & La The Impulse Response of a Reflecting Surface, 
Report No. DTR-4, The Dikewood Corp., 5 January 1962. 

Brown, W. E.,  Jr., "A Lunar and Planetary Echo Theory". 
Journal of Geophysical Research, Vol. 65, pp 3087-3095. 

2 
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The general approach to computing +he mean envelope and 
the autocorrelation of the envelope of the return signal is given in 
Sec. 5.0. 
in Appendix 11. 
results for the moon. 
experimental data. 

Listings of the two computer programs written a re  given 
Finally, Sec. 6 .  0 shows some of the compted  

The results obtained a re  compared with 
This Section also recommends some fu tu re  work. 

- 2- 
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2.0 DEVELOPMENT OF THE MODIFIED POTENTIAL FOR A 
PERTURBED SPHERE 

The impulse response function as derived in Appendix I is 

where 

C is the integration path and is the set  of points at distance R 

G is the antenna gain in the direction of the increment ds, 
k is the voltage reflection coefficient of the surface at each 

from the transmitter, 

point on the path, 

point on the path and the normal to the surface at that 
point, and 

A -  

n, R is the angle between a vector from the transmitter to a 

A is the wavelength of the transmitted signal. 

The wavelength enters in the equation from the effective a rea  
of the matched transmitting-receiving antenna, GX2 /47r. 
putation, the portion inside the square brackets of Eq. (1) is con- 
sidered first. 
because of its relationship to the vector potential discussed in 
Appendix 1. 
different terms that make up B(R) for  a rough sphere. 

For com- 

It is denoted B(R) and is called the modified potential 

The following subsections develop a description of the 

2. 1 The Modified Potential 

The first problem is to express B(R) in terms of para- 
meters  suitable for describing a rough surface. The geometry to be 
used is shown in Fig. 1. 
be described in terms of the direction cosines as illustrated in Fig. 2. 
The cosines of CY cy and cy a r e  the projections of the normal on the 

on the r 

At a point on the contour, the normal can 

A 1’ 2’ 3 
8 , $ axes respectively. The normal m is then 

0’ 0 0 

-L --L 4 

n =  cos LY r + WSCY e +coscr 4 1 0  2 0  3 0  

- 3- 
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To express n in parameters descriptive of the surface, two other 
angles y and 
axis of" the projection of n on the ro, 8, plane. 
deviation from the ro axis of the projection of the normal on the ro, 
80 plane. These angles may be described in te rms  of direction cosines 
as 

are defined. The angle y is the deviation from the ro 
4 

The angle e is the 

2 
cos a 

tan y = 
cos CY1 

3 

1 

cos CY 

cos CY 
tan E = 

From Fig. 1, the R vector from the source to a point on the surface 
is in the rO, 6 plane and is described by 

0 

d 

R = R ( c o s d F o + s i n 6 s  0 ) (4) 

- A  A 4 

The cot (n, R) can be derived from the scalar product of n and R 
which gives 

(5) 
2 cos 6 cos Q + sin 6 cos Q 

[1-(cos 6 cos cy +sin 6 cos cz 2 

1 -.LA 

cot (n, FQ = 

1 

Substitution of Eq. (3) into Eq. (5) yields 

(6) 
cos 6 + sin 6 tan y - 4  

2 2 
cot (n,R) = 

(s in6 - cos 6 t an  y) + tan 5 

It is desirable to convert the integration over s to an inte - 
gration over the azimuthal angle 6. The usual  relation for polar 
coordinates is 

ds 2 d r  2 + r 2  d 0 2  2 
(.a) = (a) (3) sin2 

-4- 
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Fig. 1 - Geometry of Sphere and Source 

A 

r 
0 

Fig. 2 - Relationship at a Point . 
- 5- 
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To evaluate Eq. (7), consider the equation cf the perturbed sphere 
centered on the origin as 

The relationships between the gradient of G afid the normal yield the 
partial derivatives of r as 

cos cr 
n 

cos o& 
3 

r4 = - r s i n 8  = -psi3 8 tane  
1 cos cy 

The other relationship needed is that relating R to the intersection, 
Thiscan be wri t ten as 

2 2  2 F =  r + d  - 2 r d e o s 8 - R  = 0 

Jacobians involving F and G give the result 

r r tan6 d r  d .  

de 
r + P  t an  6 8 3 =  - 

- 6 -  
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Incorporation of Eqs. (9) ar,d (11) into Eq. ( 7 )  yields the resu l t  

2 2 

2 
2 2 ( s in6  -tan ycos 6)  + t an  ($)2 = r sin e 

(s in  6 - tan y cos 6) 

Finally, the desired result is 

- - d s -  cos 6 + sin 6 tan y 
s in  6 - t an  y cos 6 

cot (n, R ) z  - r sin 8 

and the modified potential is 

27r 
(cos b 9 sin Q tan y) d4 

sin 6 - tan y cos 6 (14) 
B(R) = - l2 kGr sin 8 

R 

Note that a pole exists when tan 6 = tan y, which occurs when 
d4/ds = 0. 
tan b = tan y and tan f = 0. 
and is tractable mathematically. 
described in Sec. 5. 0. 

The only t r u e  pole for B(R) in the y, f plane occurs when 
However, this pole has a finite integral 

The method of integration used is 

2. 2 Antenna Gain 

The gain of the antenna is considered in the computer 
codes as a constant since the target sphere subtends a sufficiently small 
angle at the transmitter. In other cases the consideration of the vari- 
ation of antenna gain can be easily included. 

2. .3 Reflection Coefficient 

The k in the equations for the modified potential is a 
voltage reflection coefficient. 
dielectric material, the reflection coefficient is simply 

For normal incidence on a smooth 

T)l - q2 

ql + 7)2 
k -  

-7-  
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where q represents the usual impdance. However, for the problem 
considered here oblique incidence O C C U ~ S  and both the angle of inci- 
dence and the polarization angle must be considered. The reflection 
coefficient for the parallel and the perpendicular components wi l l  be 
termed k and k respectively. Employment of the usual  conditions 

for the reflection of an E M  wave at the boundary of a smooth homo- 
geneous dielectric yields 

H V 

where $ = O  has beer. arbitrarily selected as the azimuthal angle in the 
direction of the polarization. The k ' s  in Eq. (16: a re  

where 

The validity of the equations for reflection coefficient is certainly 
open to question, since they are derived for a smooth homogeneous 
dielectric, but the effect of possible e r r o r  here is not thought to be 
serious . 

- 8- 
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3.0 STATETICAL RELATIONSHPS 

The equation given for  B(R) in the preceeding Section is, of 
course, valid only for a specified path. 
specified for every point on the path to obtain a value for B(R). 
However, some characteristics of B(R) can be described statistically. 
The statistical relationships necessary for the description of aver- 
ages of the return signal a re  developed below. 

That is, y9 E ,  and I- must be 

3 . 1  Moments of BgR) 

Of major interest is the emernble average of B(R) 
and the autocorrelation B(R)B(R+AR). T h e ~ e  functions are,  in part, 
specified by the surface parameters ~ S i x e  the relative deviation 
of the radius r from the mean radius a is small, the mean radius 
wil l  be used instead of r. This leaves only \ and e as variables. 

The simplest way to  view the ensemble average is to 
consider the integral of Eq. (1) as the limit of the sum 

n - 

A b  n-m i= 1 

Since expectation is a linear operator, acd  G is independent of the 
surface parameters, 

lim 2 G .  k .  cot(Gi, E) Asi (19) 
I 

R 
B(R) =2 

1 1  
n+a, i 

The variables y and 5 are  assumed independent of each other at a 
point; thus, r 7 r  

2 2  
- -  

B(R) =% G kcot 6 g)p(y)p(E)dWEds (20) 

-- - R 
2 2  

-9-  
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obtains. 
fashion and 

The autocorrelation of BQR) can be obtained in a slmitar 

- -  

The joint probability density function in Eq. (21) is a fcnction of the 
particular values of s, axld s as well  as  of the range difference AR. 

i 2 
The matrix of ccrreletion coeffiieiepts is derived later in this section. 
In the above eqmtiors,  y 3rd f were treated as the statistical vari-  
ables. 
employed. The tange.nts are used since they occur naturaily jn the 
equation for B(R) ar_d have an infirzitte range. 

In the actual ccmputations, the %angents of the azgles are 

3. 2 Statistical Vzriables 

The variables of interest are the tangents of the devi- 

The p-obability 
ation angles y and e. The deviation of the r e d i u s  of the perturbed 
sphere from the mean wi l l  not be ircluded infthlly. 
density functions of the tazgents of the srzriables wil l  be approxi- 
mated by the weighted sum of a series of Gaussian functions each 
having a zero mean, 1. e. of the form- 

1 

i i 

This se r ies  was  selected since it is symm-etric, has an infinite range 
(as does the tangent), has a mode of zero, and is a member of the 
class of density functions that requires only linear correlation 
coefficients to describe a multivariate distribution. 

The correlation coefficients a r e  a function of the displacement 

-LO- 

(along a great-circle path) and the angular rotatis2 on 6- Consider 



two points on aE integration path. The devMiorl angles zt these 
points a r e  y .? flJ and y 1 
circle is passed. Two new deviatior, angles a and b a re  defized 
where a is the deviation in the plane of'the great circle and b is the 
deviation in a plane orthogonal to  the great circle. The angle be- 
tween the slope of a and e is 4 / 2 0  The relationship between the 

slopes may be written 

. Through these two points a great 2' F, 

1 1 

and 

2 tan 5 

It is assilmed that the correlation between tar, a. and tan b. is zero 

for any ij, that tan a tan a is equal. to tan b, tan b and that the 

correlation is only a function of distatrce along the great-circle path. 
Using the above relationskips and assumptions the following matrix 
of correlation coefficients w a s  obtained. 

I J 
1 2 - 2' 

1 Y 

p cos A4 0 P s in  (&) 

- 11- 
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The coefficient p is more properly p(D) where D is the displacement 
and is of the form 

tan a, tan a, 
J. 6r 

P-=- n 

uL (tan a) 

If the distribution of tan a (or the tangent of 
coefficient is known, the multivariate equivalent of Eq. (22) can be 
written. Le%ting x indicate the array (tan f, ,  tan f 
the multivariate distribution is 

or f )  and the correlation 

tan ‘y t an  y2), 
i 2’ 1’ 

where M represents the covariance matrix. 

3 . 3  A Relationship of the Radius to the Slope 

The approach described in this report is directed 
toward determination of the probability density and spatial correlation 
of the slope. 
face elevation o r  r a d i u s  from these quantities. 
a and the deviation frcm the mean is x, then r = a b- x and x has a 
mean of zero. 
(along a great-circle path), 

However, it is possible tc describe partially the s u r -  
If the mean radius is 

In general, for two p i n t s  separated by a distance D 

n 

If 9 is the deviation angle of the normal in the great-circle plane, then 

p2 

- 12- 
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The path of integration is the intersection of the great-circle plane 
and the sphere. The variance of the  height differential can be written 

D D  

2 Ex, - x1)2 = 1 [ tan $1 tan G2 dsl d s 

0 0  

D D  

0 0  

for p 

transformationAs = s - s gives 

as a function of the displacement between two points. The rc/ 
2 1  

D s  11 p ( A s )  dAs d s  (x2 - x1I2 = 2 0  
$ rc/ 

0 0  

Combining Eqs. (24) aad ( a ? )  gives the relationship 

2 D s  
2 P P  

0 0  

Thus, i f  the standard deviation and correlation coefficient of the 
slope a r e  known, the same parameters can be determined for t e 
radius. In the limit, Eq.(28) is a form of Daniels'relationship. 9 

3 
Daniels, F. B. 
and Planets", Journal of Geophysical Research, Vol. 66, No. 6, 
p 1784. 

"A Theory of Radar Reflection from the Moon 

- 13-  
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If the angular correlation coefficient can be determined, the 
variations in height can be descrihed partially. 

- 14- 
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4.0 THE RETURN SIGNAL 

The relationships necessary to describe a radar  return signal 
were developed in the previous section. 
general characteristics of an impulse response a re  employed below 
to develop several functions of the return signal. 

These relationships and the 

4 .1  Description of the Return Signal 

Given an impulse response h(t), the return signal g(t) 
can be expressed a s  the convolution of h(t) with the transmitted sig- 
nal f(t), a s  follows 

if  a pulse is transmitted and i ts  duration T is less than a / c  where 
a is the radius of the planet and c is the velocity of light, the limits 
of the integral a re ,  defining t = 0 a s  the leading edge of the pulse: 

1 
I 
I 
I 
1 
I 
1 

where t is 
B oint onothe 

t f o r t  < t < t + T  
0 -  0 

f o r t  + T < t < t  m - t - T  t 
0 

t - T  t f o r t  < t < t + T  m m -  m 

the transport time 2(d - a ) / c  to and from the nearest 
reflecting surface, and t is the maximum time 

/ c. 
m 

Integration of Eq. (30) by parts gives the result 

t2 

-15- 
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B(7) may be expressed as a Taylor ser ies  expana;on about 7 = t, 
in the interval from t to t2' as foliows: 1 

M -- 

B(7) = 2 - 1 d"B(s) (7 - t)" n! d T n  
n =  0 

Then 

The first term, n = 0, of this series is 

Trial  of the various values of t, and t 
zero. 
order, one obtains 

snows that this te rm is always 2 Using this fact and integ?ating by parts again in the reverse  

A 

where x = t - 7 .  Furthermore, i f  it assumed that the transmitting 
antenna gain, as a function of frequency, is zero at zero frequency, 

then f(x) d x  = 0, and for the middle time interval, t +T<t  < t 

the n = 1 te rm vanishes. Also, in the middle time interval, the 

t 

m' 0 

- 26-  
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th integral in  the n t e rm is independent of t and can be expressed as 
Fn(T), or 

where 

0 
E- 1 

F n (T) = sf(.). d x  

T 

for the d d d l e  time interval. This implies that all t ime dependence 
of g(t) is due to the derivatives of B(7Q evaluated at T = t, and for 
a<<X, most of the energy in g(t) wi l l  be at frequencies much lower than 
W ,  provided the rea re  no rapid fluctuations in B within a pulsewidth. 

Another interesting expression for g(t) is obtained by consid- 
ering f( t )  to be the product of an envelope function and a sinusoidal 
R F  wave: 

A(t) sin w t 

0 elsewhere 
f( t )  = 

then 

A ( t  - T)sinw(t - 7) 

0 elsewhere 
f (t<vi v)i:- 

O<t<T 

t-T<T< t 

and 

wA(t - T)cosu(t  - 7 )  + d A ( t  - ') sinw(t - 7) dT d f ( t  - 7 )  - - 
for t - T ' C ; T  Ct,  0 elsewhere 

d 7  

-17- 
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This permits Eq. (31)  to be written as 

t2  

+ sin w 7  [wA(t  - 7 )  s i n w 7  -6- dA it - 7 )  cosw7] BQi)d7 
d 7  

t 1 
I / 

The four integrals involved may be identified as the integrals for 
evaluating the Fourier coefficients of the fw-ctions wA(t - 7 )  B ( 7 )  and 

dA(t - T ,  B (71, at the frequency W. If A changes only slightly in a 

single cycle, then the coefficients w i l l  be small  gnless there are 
fluctuations in B ( 7 )  in distances of the order of 2. wavelength. 
power-series expansion of B(7) may be inserted in Eq.(33) i f  desired. 

d 7  

The 

The details of the computation of g(t) a r e  obviously quite 
dependent on the shape of the envelope function, A (t). Consider the 
rectangular pulse with an irrtegral number of cycles in it, so that 

T 

A ( t )  = A and l f ( t )  = 0. Then, f romEq.  (31)  

0 

t2 

g (t) = f cos w ( t  - 7 )  B ( 7 ) d 7  

Using Eq. (32), the leading term for  the first time interval is 

dB'T'  I 
COS o(t - to), t .( t f t  +T 

0- 0 (34) t - t  2 d 7  g p  = 
16 T W  

-18- 
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and a similar expression for the last time internal. 
the middle interval g (t) vanishes, and the leading te rm is 

However, for 

1 

(35) 

This is not only a higher-order term, but it has a weak time depend- 
ence i f  B (2) does not fluctuate. If it had not been assumed that there 
were  an integral number of cycles in the pulse, there would have been 

a te rm due to- d B  but it would still have had the "weak" t ime depend- 

ence. 
d a  ' 

Finally, application of Eq. ( 3 3 )  yields 

g w  = - cosut c o s w ~ B Q ~ ) d ~ + s i n w a  87r 

and the Fourier coefficients of B ( 7 )  are the significant quantities. 
It might seem that this expression would give terms at w even for the 
middle internal, but because the limits of the integrals involve t 
i f  the power series for BQt) is used, the time dependence of the 
resd tan t  expression is stiLl "weak". 

4 .2  Measures of the Return.Signa1 

The return signal from a planet wil l  usually vary 
widely from pulse to pulse, Consequently, it is often characterized 
by averages such as the mean power, the mean envelope, o r  the auto- 
correlation function. The most obvious average g(t) is easily ob- 
tained analpically by replacing B (a) in the equations of the previous 
section by B (T). Howevep, this measure contains both the R F  modu- 
lated wave and any low frequency components of the return signal. 
An attempt bas been made in the previous section to show that such 
components can exist, and perhaps even dominate the R Fcomponent 
in certain cases, especially for the middle t ime interval. A more 
interesting measure of ggt) is the average of the w component, 
which w i l l  be called gw (t). It has been shown, at least for the 

- 

- 19- 



rectangular pulse, that g (t) arises from- t t ? ~  w com~cner;r, of B (t), 

Bw(t), evaluated between the limits t and t An ewetope detector 1 2' 
attached to a resonant receiver actually measures the average over 

an R F  cycle of g (t), o r  g (t) where the wiggly bar  represents RF 
averaging as distinguished from the straight bar for ensemble aver- 
ages. That is, i f  a rnember of the ensemble of g (t) is g . et) = 

E.(t) cos (w 7 9 @ i), the R F  average is 1 Z ) l  = 2E.(t3 / T *  I f the 

peak amplitude of the transmitted pulse is A, the normalized aver- 
age envelope response is 

w 

w IT1 
w W 1  

1 1 

which will  be called E (t). 
1 

All  the processes invclved in obtaining E (t) from g (t) 
a r e  linear operations except the taking of the absolute value. 
be desirable to be able to express E(t) in terms of B E l ( s i n c e  'B(7J 
is in turn expressed in te rms  of the probability distribution of the 
deviation angles without involving the autocorrelation function of the 
deviation angle$ If E(t) can be adequately expressed in terms of 
mi , then comparison of E (t) with experimental values can deter- 
mine the W . ' s  and G . I s  of Eq. (22). This is not possible in general 

because of the absolute-value operation involved. The best that can 
be done is to separate E (t) into two parts, one due solely to %T), 
and called E (t), and another called E ( t )  that vanishes when the 

random component of B{T)i vanishes. E (t! wii l  be investigated to 

see  whether there a re  important cases where it is the dcminant part 
of the envelope function. 
g g e n e r a t e d  by m). 

It would 

I 1 

C r 

0 

This will be accomplished by studying the 

B ( 7 )  and its derivatives a r e  smoothly varying functions 
between t and t 

0 m' 
first derivative is negative. 
little in one RFcycle. 
difficult to evaluate numerically. 
s l o w  variation of B(7)  with 7 makes the Taylor ser ies  expansion 
converge rapidly. 
to lunar experiments, to be discussed in a later section, the ser ies  
was  well represented by its leading term. Therefore Eqa. (34) and 
(35) were used to evaluate 
respectively. 

It and its second derivative are positive, and its 

If h <<c  T < < a  then r f l  changes very 
This makes expressions such as Eq. (7) very 

On the other hand, the relatively - 
In fact, for the numerical examples corresponding 

in the octside and middle time intervals, 
For the outside time iEtervals the equation is already 
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in  the f ~ s m  necessary for evalilatmg E 

a slowly varying time f ~ n c t ~ c j ?  and z ccs 

~ F C G  it is +he product of e 
- t i Pzctcr. 
0 

I- 
(371 

T ' t  

for the outside time xt.;r'ik-s. 
component received w ?e :?:e F o u r l e ~  ccm7onent ci the second 
derivative CP B ( a )  at, w c.r $~ithir_ the kmd-?ftdth cf the receiver. 
Numerical axLysihs sh?ows tjat tl.:.s is 70% the majcr component of the 
experimentdily observed signal. Theesefccse, in tLSs time interval, it 
is not justified to neglect E (t). "1. the f5m.C Dime interval the numer- 

ical value of E it)' Is the s&me ~ r d e a  ~f r-agnitude 8s the observed 

signal, s o  Eq. (3'3) m-ay be ;IseX, at l e a s t  for scme lmar problems. 

For t k . ~  inszrle time mtervd3 the only 

r 

0 

There is no\ practical analytical method known to the 
authors for evalciatmg the random csmponer_t e% B (7) directly, and 
hence obtaiging E r(tj.  For cases where this is important, it will be 

necessary tc use scm-e other measare of the r e t x n  signal for com- 
parison with experiment. 
7uuuo\ 

[t). 
2 

The ned- p~ssxbi i i ty  to be considered is 

It has the ad;farrtage csf ~ c t  reqxirmg the absolute magnitude 

signs tha% OCCUF in  defining the enwe-ope fmction. 
that ai assumption of the correlation function of the deviation angles 
is required. 

gw 
Its disadvantage is 

For the unit am->:litude sectmgular pulse, one obtains 

i 



which can be expressed as 

=(q2 s 
t -7 2 

cosw(t - 7 ) C O S W ( t - 7 - U )  s 
t-7 1 

The limits t and t a re  defined as before. In this case the w com- 

ponent at the antenna appears as a 2w component after squaring. By 
using a bivariate Taylor expansion of B ( T  + u) B ( 7 )  and selecting the 

2 w  component, one obtains g 
a r e  

1 2 

- 
2 . The leading terms of the expansion 

W 

2 2 The B (t) term vanishes when g (t) is computed, and the te rm due to 
the derivative with respect to 7 behaves in essentially the same way 
as the derivative of B(7) term did i n  computing.g(t), vanishing in 
the middle time interval. 
to u is the te rm that corresponds to the random component of g (t). 
If this derivative with respect to u is large enough to cause an appreci- 
able change in B ( T +  u)B ( 7 )  for u * s  corresponding to times on the order 
of one R F  cycle, then this term will cause the major component of 

2 
gW (t), at least for the middle time interval. 

- 
The term due to the derivative with respect 

The last measure of g ( t )  to be considered is the auto- 
correlation of g (t), g (t) g (t + 0). This functions allows the 
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consideration of the autocorrelation of B(T) over ranges greater than 
2 T. However, the discussion of g (t)indicates that the important 

autocorrelations of B (7) for creating components of g (t) at w a r e  
those with separation distances of at most a few R F cycles. 
time interval is too short to be resolvable in the experimental data, 
SO little new information is to be expected from g(t) g(t + (T). For 
t b s e  reasons *e discussiqn wil1;be confined to setting down the 

defining relations. Because calculation of g (t) involves doing most 
of the necessary work for calculating g(t)  g ( t  + (T), the machine code 
was  designed to calculate the more general measure. 
correlation function may be written as 

- 

This 

2 

The auto- 

n t2  tE2 

Ll Ll 

B ( v ) B ( p j d u d v  

2 The major difference from the expression for g (t) is in the limits 
integration. These a re  now given by the table on the following page. 
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5.0 COMPUTING APPROACH 

The theory of the precerding sections has been used in the 
preparation of two computer programs OF codes. 
designed to investigate the envelope function from B(7) ~ 

calculates g (t) and g I t )  g (t + sj from B (7) B (7 + u). The first code 
has been checked out and compared briefly with experiment, but time 
did not permit this for the second code. 
appear in  Appendix 11. 

The first code w a s  
The second 

- 
z 

Listings of the two codes 

. 5.  1 The Envelope Code 

A Monte Carlo approach -gas selected to evaluate the 
integral expressions fcr the measwes cf B (R) (in the csse of this 
code B(R) as expressed hy Eq. (20)). This selection w a s  made since 
the problem is essentially a statistic81 one. 
three other reasons for this choice. The first is that n-dimensional 
integrals can often be . ~ v & m t e d  in fewer steps i f  points a r e  selected 
for evaluation of the integrand a andow-ly throughout the n-dimensional 
space, and the integral. is evaluated as the average value of the 
integrand times the a rea  of the surface OF hypersurface 0% integration 

IE addition, there a r e  

Tlze other two reasoxs for choosing the Monte Carlo 
approach relate to the singularity of the integrand. When B (R) was 
expressed in the form of an integra? over 6 between 0 and 2 7~ in 
Eq. (14) a s ingdari ty  occurred wherLever tan Q = tan 7. Tests 
showed that ir, this fcrm the integral. diverges. 
integrals in See. 3 w e r e  used in the form of integrals over s. In 
this form there is still a singularity when the normal ;is directed 
along 
and tan 5 = 0, ar_d the integral converges. However, in this form 
the limits of integration a re  not known, since the length of the contour 
is not known in advance. It was found that by taking a random walk 
around the contour, the contour length could be evaluated at the same 
time contributions from various parts of the contour to the integral 
we r e  being evaluated a 

For this reascn, the 

but this only occurs for  the double condition, tan 6 = tan y 

The last r e a s m  for using a Monte Carlo method is 
that the integrand still had a singularity even in the form in which it 
converged. To accurately and efficiently evaluate an integral with a 
singular ir,tegrand, many more mesh points or samples are needed 
in the viciraity of the singularity. In the Monte Carlo method this can 

-25- 



be accomplished by biasing the probability distribution from which the 
variables are picked. The contribution to the integrand by this factor 
is then removed before accumulation. This corresponds to a nonuni- 
form and variable mesh spacing ir? ordinary methods of numerical 
integration which is difficult to  formulate for multiple integration. 

Equation (20) p a y  be rewritten as 

0 0 0 0  

- R2 d[B(R)l  = kcot(f?, z)R(tany)F(tan E)d(tany)d(tan%) d s  
-a3 -00 

G 

To execute the biasing operation, the variables of integration a re  
changed to 

dQ,, = , (tan ’) d (tan y) 
V t a n y  - tan 6 

d Q P  = p (tan ‘) d (tan 5 )  

The &Is a re  actually biased cumulative distributions. 
limits of integration become zero, and the upper limits become 

The lower 

00 

1 P(tan d (tan E) - 
-26-  
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The reciprocal square rost cf t h e  distance from the slngdasity is 
chosen as the bias factor to approximately compensate for the strength 
of the singularity. Thus one cbtalns 

If Q and Q m e  ckosen igdeper,der,tly from- imifo'srm distributions N 

tirnes, and the ir_tegral is aprcximated by the average va!E;e of the 
integrand times the pmdiict of the ralzges, one obtaips 

Y e 

i= ]I 

where N is still arbitrary. 

of Q and Q 

then i f  $ i s  started Zt 3 and accarnxlated, the series of selections 
may be terminated at $ = 2 T .  

contbur is then S (R) = N A s ,  and 

If a As is selected and for each selection 

a ccsres2ocdicg A $  is ca!cu!ated assuming A$=- ''#J As, 
Y E a  ds 

The estimate of the length of the 

N 2 k cot (c.R)7/tan yi - tan 

i= 1 

& A  

0 - As (41) i 1 1 R2 

- 
If this process is repeated N 

then the best estimate of B(R) is the average of the individual esti- 
mates. 

times to improve the estimate of B(R), 
C 

s_ 

If the desired nstimate of B ( R )  is to be the aver-age value 
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over a range of R such as the ps29s~width, then R may be chosen 
from a uniform distribution on its range fer each of the N 
Thus 

estimates. 
C 

G-D E 
N 

- - -  
C 

" ce D - - l  

Ti L L 

D 

on tan 6 which is in tu rn  dependent on R, and the most efficient choice 
of A s is, in general, dependent on tan 6. If A s  is to be chosen SO 

that there a re  at least N 

and A s have been included in  the summation since D is dependent 
Y Y 

steps around the contour, then min 

2 1  a s i n 8  

Inin N 
As = 

However, it was found that when the rnaxirnumo of the probability 
distribution was larger than tan 6, an inefficiently large number of 
steps were required to get around a contour. 
2 4 2  omax >: tan 6, As w a s  replaced by 2&20 

Therefore, for 
A s l t a n 6 .  max 

The variance of the estimate of B (R) is given by 
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2 2 
wheseIE(R);I LE the sguhre of 

Eq. (42): Each of the above equatmcs is actually to be considered as 
two equations, one for evaluating the depolarized compuaent of B(RJ;, 
By(R), using 'k. for k from Eq. [I&), and the &her for determining 

is t h e  square of Eq. (411, m.3 (P$(Rjj, 
3 

'd 

the undepolarized comporient of SIR). B (It)> using Eq. (16a). The 

evaluation of cot (n, R), and of - (for determining A$) proceed from 
HE 

do 4- 

ClS 

Eqs. (13) and (12) respectively. 

The plan of the calcLEations to this p i n t  is then to 
evaluate Q versus taa4 from Eq, (22) with W.  ard 0~ as input data. 

The rarzge R is t k r z  chcser, and the ti-igometrlc fsnctions of 6 and 
8 are  computed starting from the !aw of cosines. 
equal to 0, A s  is evalmted, and Q is evaJu2ted V Z ~ S U S  tan 6 .  Then 

v 
tan y and tan .$ a re  chosen by chcrseing Q 

distribution. 
evaluation of a A4- 
and tan E is rn-a.de. 
accumulating the cont~ibutions to E(R). A te rm of Eq. (43) is calcu- 
lated and a csw R is calculated; th i s  process is iterated N times, 

continuing the acccmulztion of B(R), and CJ (BQR)). 

6 a 

The mgle $ is set 

and Q from a uniform 
Y E 

This allows evaluzticn of one te rm of' Eq. (41)) and the 
4 fa iticremected and a new selection of tan y 

T%s process is continued vlntil 9 reaches 2a, - 
C 2- 

2- A.Ees evzimtim of 3(R) acd CT QB(R)) for each of 
several pulse ysi t ions,  
Egs. (35) a d  (36). 
difference approximation over the irLterva8 between the pulse positions. 
It is realized that g (t) is not necessarily a good approximation to  
the tot& sigxal received at freqLzelrtcy k, at a11 times. 
pose of the calculation is to see whether ezsefal comparisons with 
experiment can be made without including the random component 
of B(R). 

(t) E L P ~  its variance are calculated using % The derivatives are eailmatsd from the finite 

0 The main pur- 

An additional osttput. is svallable from this code, 
namely the estimate of the contour 1engt;h.ma.t each R used. 
wilh be explained below, having this contour length simplifies the 
evaluation of B(R) B(R + A R )  in the other code. 

A s  

5. 2 The Cor re l a ion  Code 

The cakulat im ofB(R)B(R+AR) prcceeds fromEq. (21) 
- 29- 
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rewritten as 

- & .  A -  

k k cot (n , R) cot (n2, R+ AR) Bqtan v , tafi y. tanS,, tanEq)d(tan Y1) 1 2  1 d l  2 L 

d( tany d(tan E , )  d(tariE2) d s  d s  2 1 2  

The transformation of varizbles used is analogous ts that for B (R), 
and is given by 

P( tany  

YI 4 t a n y  - tan6 
dc[tan y 1 1 

1 d Q  = 

1 1 

P (tan 5 , )  
d (tan E , )  

P (tan 5,) 
d Q  = d (tan E,) 

The upper limits, PTi 
the corresponding d Q s s  from -00 t o 9 m  
specified on the basis of the univariate distributions because it is dif- 
ficult to choose variables from a multivariate distribution on the basis 

Dy2, DE1 , and D a r e  again the integral of 
E2 

These transformations a r e  
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of a group of random numbers. 
determined using the envelope code, the limits on the s integrations 
may be approximated by the appropriate 79s. 
expression is 

If the length of the contours has been 

Thus the resulting 

dtanyl-tan61)(tany -tanb2) ‘\ltanFltanf dQ dQ dQ d ds ds 
2 2 yf  y2 E 1  %2 1 2 

The Monte Carlo estimate of this, for N selections in the six dimen- 
sional space, where 6 and 6 are chosen from. miform distribu- 
tions for 0 to 21, is 1 2 

(tan y1 - tan 6 ) (tany - tan 62) tan E tan E2 
1 2 1 

where an i subscript has been left off all the variables. 
of B(R)B(R+&R) is calculated from a formula analogous to  the one for 

CJ (B(R)) . 

The variance 

2 This time the equations represent four equations for the 

H1 k.H2 ’ four possible combinations of X and k namely k 

klHlliv2, Xvl KH2, and Xvl kV2. 

1 2’ 
The code is presently arranged 

to calculate g(t)g(t + At) from Eq. (40), but this wil l  probably have 
to be changed because of the high degree of cancellation involved in 
the integrand. The Taylor expansion of Eq. (39) would be used. 
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6 . 0  RESULTS AND CONCLUSIC9NS 

6.  1 Numerical Results 

The tests of the envelope code were executed to cor- 
respond to a Lunar experiment conducted with the 68-cm Millstone 
Hill Radar, as reported by Evans and Pettengill. ' A 30-microsecond 
pulse was  employed, and the antenna gain was  considered to be 37 db 
for all points on the lunar  surface. Runs were made for assimed 
standard deviations sf the slopes of 0.85 (2. gQ) afid 0.10 ( 5 .  '7 ). The 
answers obtained will be disc~lssed se2arately for the €irst time 
interval, when the signal is at least in part due to the pulse passing 
over the nearest point on the s u r f m e ,  and f O r  the middle time inter- 
val, when the signal is due to a pulse whose leading and  trailing edges 
a re  both in contact with the aurfzce. 
interval was too small to be experlrnentaLiy observable. 

shadow effects" have been ignored in the analytical procedure and 
in  the code, and these wil l  be impcrtmt on the limbs of the sphere, 
which a re  being examined at lzte times. 

The signal in the final time 
Also, 

I f  

Although the shape of the signa? was calculated during 
the first time period, the answer icclcdes the assumption of a square 
transmitted pulse, and is quite dqmden t  on that assumption. Data 
on the shape of the transmitted pulse and of the received sigcal during 
this time period was not contained in Ref. 3. Also the analysis of 
the shape of this part of the signal would be complicated by need to 
comider the receiver frequency response. Therefore, comparisons 
with experimer,t in this time interval w e r e  limited to consideration of 

~ 

loop loss (P /P 1. At the time the trailing edge of the transmitted T R  
pulse w a s  incident on the moon, the experimental and computed 
results were as follows: 

Experimental 210 db 
Computer (D = 0.05) 213 db 
Computer (C = 0. IO) 227 db 

The experimental loss was obtained from Fig. 9 of Ref. 3 and is for 
a 12-microsecond pulseo but the analysis indicates the result should 
be relatively independent of pulse length. 

Evans, J. V., and Pettengill, G ,  H. "The Scattering Behavior of the 
Moon at Wavelengths of 3. 6 ,  68, and 7'84 Centimeters", Journal of 
Geophysical Research, VoZ. 68, No. 2, January 15, 1963.  

4 
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Because the analysis only includes the part of the sig- - 
rial due to B(R) and not due to the random component, it is not 
possible to conclude at this point that the surface appears to have a 
standard deviation of about 0.05 .  
this t ime interval, the part of the signal due to  B(R) is a substantial 
part of the total signal. At least for this part of the signal, the loop 
loss is quite a sensitive indicator of the surface roughness. 
cation of the correlation code wil l  demonstrate whether this is the 
only significant part of the signal during this time period. 

It is only possible to  say that during 

Appli- 

For the middle time interval, it was found that the 
part of the signal due to B(R) w a s  much smaller than that observed 
experimentally, and thus that the dominant part of the  signal is due 
to the random component of B (R). This can perhaps he best i l lus- 
trated by comparing with experiment the znswers obtained assuming 
an infinite-bandwidth transmitter and receiver. F a r  this case the 

T 

condition that f(t) dt = 0 is abandoned, and Eq. (349 is used for this s 
0 

time interval alsa. Note that this makes the signal directly pro- 
portional to h(t). Normalizing these signals to the signal used to 
compute the loop gain, above, gives the results shown in Fig. 3. 
The computed polarized signals g (t) and the computed depolarized H 
signals g,(t) are shown& both surface @s, along with a curve 

derived from Fig. 6 of Ref. 3. It is seen that even under these 
extreme assumptions the computed signals are appreciably too low. 
When Eq. (35) w a s  used the answers were two orders of magnitude 
lower, and even in this case only a small  fraction of the signals 
would actually be observed through a narrow-band receiver. Evi- 
dently the correlation code wil l  be rdquired to obtain useful infor- 
mation in this time interval. 

The estimates of the standard deviation of the results 
for the polarized signal w e r e  about 10-2070. 
for the depolarized signal ranged from a nominal 10% at 0 . 0 5  milli- 
seconds to  over 300 percent at 8 milliseconds. 
required 1 2  minutes of IBM 7040 computer time for all the calculations 
associated with one surface probability distribution. 

The standard deviations 

These calculations 
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Fig. 3 - Computer Resul ts  
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6 . 2  Conclusions and Recommendations for Fu tu re  Work 

The envelope code, in itself, is not an adequate too1 for 
interpreting lunar radar return, but will be useful in conjunction with 
the correlation code. The correlation code should be modified to use 
a more sophisticated method of evaluating the return signal. Some 
additional analytical work may be necessary in this connection. How- 
ever, the envelope code results indicate that a reasonably efficient 
method for evaluating measures of B(R) has been found. This is the 
main part of the correlation code, and it should not require anything 
but normal debugging. Future work should concentrate on using this 
code to evaluate the power versus time in the return signal. A f t e r  
satisfactory results a r e  obtained for the power-time relationships, 
the autocorrelation function of the return signal can be explored. 

It is recommended that initial efforts involve the lunar 
radar  data. 
concerning the Earth and other planets in  ou r  solar system may be 
examined. 
effects to aid in the understanding of some additional problems. 

Once the lunar data has been interpreted, hypotheses 

Finally, the program may be extended to include doppler 
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APPENDIX I 

Basore's Theory of 
The Impulse Response of a Reflecting Surface 

The usual retarded vector potential version of Huygens Principle, 
after a two-fold application of Green's Theorem, can be expressed' as 

C 

Each component of the vector potential obeys such a relationship. For  
the present application, the closed surface S w i l l  be the expanding wave 
resulting from an impulse transmitted at  t - r / c  - r / c  where r is the 1 1 
radius of the expanding shell. 
of the impulse, so that a t  time t the volume within S is source free,  
A (t) due to the reflection is designated A 

2' 
emitted impulse at  radius r from the origin is designated as A 

1 1' 
these conditions, A (t) is just the retarded version of A (t) and 

The potential w i l l  be computed at  the origin 
The 

and the potential due to the 

Under 

2 1 

However, r is in the direction of the normal and cos(n, r )= l  and 

1 c. f .  Slater and Frank "Electromagnetism:' p. 170. 
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(I- 3) 1 '  a 
A1 + ; A1 + 

Al} 

da 
4 a J  r 

S 

If AI 

point 

is in a homogeneous medium so that it can be described at every 
by Ao(t-r/c) then no reflection occurs and Eq. (3 )  gives A(t)=O. 

In the case of concern, a boundary intersects the spherical shell and 
A 

r 

is dependent upon the boundary conditions. 1 

1 Now if A is any function of r, but not of 4 o r  8, then for A 1 
aligned with the z axis, A = A  cos 8, A = -A sin 8, A = 0, and the 

r and 8 components of curl A 
r 1  e 1 4 

a r e  identically zero. Then 1 

a Before the boundary is encountered the incident field is H (t) = 

which for  A = A  
A e  1 

( t - r /c )  is 
1 0 r 

1 1 '  H (t) = - - 
1 r Ae-c  A e  

A t  the boundary the actual field is 

a 
2 a r  A e  H (t) = - 

The 8 component of A is from Eq. (1-3) 2 
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Substitution of Eqs. (1-4) and (1-5) into (1-6) gives 

(I- 7) 

Assuming it is possible to interpret H as the incident wave H times a 
3 0 

reflection coefficient k, then 

A(t) = - 4i Ho ( t - r / c )  da (I- 8) 

The magnitude of H will depend upon the angle of incidence and the 

transmitted power. In te rms  of the usual radar symbols and a trans- 

mitted impulse function P(t) = P g (t) 

0 

2 
0 

H (t-r/c) = - 1 p- - cos (n, R) g(t-R/c) 0 R 4nrl 

Of the terms in Eq. (9), only G wil l  vary as a function of position. 
Substitution of Eq. (1-9) into (1-8) yields, back a t  the transmitter, 

(1-9) 3 .  

and the surface S is the surface of intersection of the impulse and the 
boundary. If the duration of the impulse is A u  seconds, it w i l l  have a 
duration of CALI in distance units. Since the vector R and the normal n 
are not, in general,parallel, the area increment is 
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ARds 
sin(n, R) da = (1- 11) 

where AR = cAu. 
of the vector potential becomes 

When this is included, the expression for the magnitude 

k G  g(t- 2R/c) cot(n, R) ARds 1 

4rR 
A(t) = - 2 

S 

(I- 12) 

When g(t) is treated as an impulse, integra'ion wi th  respect to R yields 
the result 

A( t )  = - '?-/L k f i  cot (n,R)ds 2 (2  4nt7 
/- 

4nR 
(I- 13) 

L 

The c /2  multiplier a r i ses  from the conversion of a delta function in time 
to a delta function in range. 
treating A(t) as a function of R and computing the curl. 

vector A aligned with the z axis is numerically equal to - A6, and is 

aligned in the 4 direction. 
wavelet arr ives  back at the transmitting antenna polarized perpendicular 
to the direction to the point a t  which it is reflected. The net effect of the 
simultaneous arr ival  from different points on the curve C can be included 
by introducing the cross  section of a receiving antenna GX /4r. 
equivalent vector potential is 

The magnetic field can be obtained by 
The curl  of a 

a r  
a 

This implicitly states that each repeated 

2 The 

A' (R) = z-/> 2 1 kG cot (n,R)ds 

(4rR)' c 

and the equivalent field is 
I I 

(I- 14) 

(I- 15) 



derivative with 

h(t) = 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

m 

The relative response is then 

or 

(I- 16) ct 
2 

R = -  
h(t) = - x 2  f { &[+ 1 k G c o t ( n , R ) d s  

(4T)  R C  

Finally, to obtain the result in the form that w i l l  be used, the partial 
respect to R is converted to one with respect to t, and 

Using Eq. (1-17) one can, fo r  example, easily obtain the standard radar  
cross  section of a conducting sphere and a conducting flat plate. 
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APPENDIX I1 

CODES 

(a) The Envelope Code 
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